Radiation in Outer Space

The bulk of the natural radiation experienced in everyday life comes from outer space. Most immediately, we’re exposed to radiation from the sun’s UV rays – hence our sensible attention to wearing hats, staying in the shade and donning sunscreen when spending time outdoors. However, the sun isn’t the only source of radiation in space.

For most of us, these additional space-related sources of radiation aren’t a problem. That being said, they do pose a problem to astronauts and others whose “radioactive careers” may find themselves conducting research outside the earth’s protective atmosphere.

 

Outer Space Has Three Different Types of Radiation

The earth’s atmosphere serves as a protective shield for those of us planet-bound animals and plants. Once you leave that protection, you’re exposed to three different types of radiation – all of which can be harmful if you don’t take proper precautions.

Here are the three types of radiation found in space – from the sun, within the Milky Way galaxy, and beyond. All of them pose a threat in the form of ionizing radiation – which means it disrupts the DNA “blueprints” in our cells, making it difficult for the cells to do what they’re supposed to. The results of exposure to ionizing radiation can be negligible or they can cause full-blown radiation sickness.

Particles trapped in the earth’s magnetic field

The earth’s magnetic field is a “trap” for radioactive particles from outer space that are blown towards earth via the solar winds. This magnetic field, which exists as a series of belts on the inner-region of the earth’s magnetic sphere – are actually the product of electric currents generated outward from Earth’s liquid, iron core.

Ultimately, these electric currents attract and trap radioactive particles, protecting us from 99.9% of harmful radioactive particles and radioactive waves from space. Once you leave that field, however, it’s a different story. According to space.com, “An instrument aboard the Curiosity Mars rover during its 253-day deep-space cruise revealed that the radiation dose received by an astronaut on even the shortest Earth-Mars round trip would be about 0.66 Sievert. This amount is like receiving a whole-body CT scan every five or six days.”

Particles shot from space during solar flares

When solar flares and/or coronal mass ejections occur (they often occur at the same time), the sun spews out tremendous quantities of highly-charged protons. Since earth is in relatively close proximity to the sun, we are a regular target. When this happens, the earth’s poles as well as other high-elevation locations can receive these radioactive particles within 30-minutes or so of their occurrence. Unfortunately, solar flares and coronal mass ejections aren’t that easy to predict. The less they occur the better for those of us on earth, and it’s also a good thing the most affected areas of the planet are less inhabited.

Galactic cosmic rays

Finally, galactic cosmic rays contain heavy, high-energy ions of various elements. Because these elements are traveling through the galaxy at speeds close to the speed of light, they are stripped of their electrons en route. Ultimately, these rays ionize the atoms they pass through – and even the wall of a typical spacecraft – and certainly an astronaut’s skin – hardly work to slow them down.

These galactic cosmic rays are considered the dominant source of radiation in space, and they pose the most significant threat to the humans that operate The International Space Station – as well as anyone who will eventually participate in future space missions. The sun’s magnetic field works to interfere with these particles – but that protective field decreases when sunspots are minimal. This weakens the sun’s magnetic field, making galactic cosmic the most intense during these minimal sunspot phases.

Fortunately, galactic cosmic rays are easier to predict so the International Space Station and scheduled space missions take this into account when planning and manning intergalactic exploration.

Because the exploration of outer space is relatively new, we are still learning about the risks and long-term effects of radiation on astronauts and those will work in – and will eventually travel to – outer space on a more regular basis.

Lancs Industries Creates Customized Radiation Shielding Products

While we’re happy to help protect astronauts and future space employees in the future, Lancs Industries is a leader in customized radiation shielding products for those who work in radioactive careers – or find themselves exposed to radiation – right here on planet earth. Contact us to learn more about our products and services.

Subscribe to our Newsletter

Get industry updates and new blogs straight to your inbox.